Ensuring Accurate Hazardous Gas Detection

Sponsored by

Dräger
TABLE OF CONTENTS

Ensuring Accurate Hazardous Gas Detection

- Calibration: The key to accurate readings
- Causes of calibration drift
- Calibrate for worker safety
- Bump tests vs. full calibration
- When to bump test and when to calibrate

Best practice: Set calibration rules
Ensuring Accurate Hazardous Gas Detection

Gas-monitoring instruments are designed to protect personnel from unseen hazards that may exist in workplace environments, including confined spaces. It is vital to worker safety that these instruments are maintained and calibrated properly.

Instrument inaccuracy because of improper or irregular calibration can lead to serious accidents. Exposure to excessive levels of toxic gas or an oxygen-deficient environment can cause workers serious illness and even death. Gas explosions are often catastrophic, injuring or killing personnel and destroying property.

The International Safety Equipment Association (ISEA), founded in 1933, is a trade association for manufacturers of protective equipment, including environmental monitoring instruments. The ISEA recommends, at a minimum, verification of sensor accuracy before each day’s use.

The only way to guarantee that an instrument will detect gas accurately and reliably is to test it with a known concentration of gas. Exposing the instrument to a known concentration of test gas will show whether the sensors respond accurately and whether the instrument alarms function properly.

Calibration: The key to accurate readings

Gas detection instruments are used to detect the presence of toxic and combustible gases, as well as oxygen deficiency or oxygen enrichment, which is a fire and explosion hazard. Workers cannot rely on their sense of smell to alert them to odorless hazards, necessitating the use of gas detectors whenever a worker enters an area with potential atmospheric hazards.

“Calibration” refers to an instrument’s measuring accuracy relative to a known concentration of gas. Gas detectors measure the concentration of a gas in an air sample by comparing the sensor’s response to the response generated by a calibration gas of a known concentration. The instrument’s response to the calibration gas serves as the measurement scale or reference point.
The responsiveness of electrochemical sensors will vary with environmental conditions. Sensor response will be different (lower or higher) depending on the actual environmental conditions. Therefore, as much as possible, the monitors should be calibrated at environmental conditions that are the same as (or similar to) actual field conditions. Calibration at locations where the equipment is to be used is always preferable.

Most instruments are equipped with two levels of alarms—warning and danger. The warning alarm alerts the user that the environment has a detectable concentration of gas and is therefore potentially hazardous. The danger alarm indicates that the gas concentration exceeds the programmed “hazard” threshold, and the area is approaching a hazardous level. Whether an instrument warns and/or alarms at the proper time depends on its detection abilities and its ability to translate its findings into an accurate reading.

If the instrument’s reference point has shifted, the reading will shift accordingly and be unreliable. This is called “calibration drift” and it happens to all detectors over time. An instrument that experiences calibration drift can still measure the quantity of gas present but it cannot convert this information into an accurate numerical reading. Regular calibration with a certified standard gas concentration will update the instrument’s reference point, ensuring that the instrument will produce continued, accurate readings.

Causes of calibration drift

Over time, the accuracy of gas detection instruments can diverge from their calibration settings in several ways:

- Gradual chemical degradation of sensors and drift in electronic components that occur naturally over time.
- Chronic exposures to, and use in, extreme environmental conditions, such as high/low temperature and humidity, and high levels of airborne particulates.
- Exposure to high (over-range) concentrations of the target gases and vapors.
- Chronic or acute exposure of catalytic hot-bead LEL sensors to poisons and inhibitors. These include volatile silicones, hydride gases, halogenated hydrocarbons, and sulfide gases.
- Chronic or acute exposure of electrochemical toxic gas sensors to solvent vapors and highly corrosive gases.
- Harsh storage and operating conditions, such as when an instrument is dropped onto a hard surface or submerged in...
liquid. Normal handling/jostling of the equipment can create enough vibration or shock over time to affect electronic components and circuitry.

Often, after exposure to the more extreme conditions listed above, when calibration is attempted, the detector will either display a failure message or it will not allow the user to fully adjust the display reading. At this point, the severely damaged sensor must be replaced and/or the detector serviced by qualified personnel.

Calibrate for worker safety

The primary reason for proper, regular instrument calibration is to prevent inaccurate gas concentration readings that could lead to injury or to death. Correctly calibrating an instrument helps to ensure that the instrument will accurately respond to the gases it is designed to detect, warning users of hazardous conditions before they reach dangerous levels. In addition to detecting and correcting for calibration drift, regular calibration assures the user that the instrument is functional.

Gas detection instruments are often subjected to harsh operating and storage conditions where they can be damaged. Both of these factors can affect instrument performance, leading to inaccurate readings or even instrument failure. While a unit may appear to be sound during a visual inspection, it could actually be damaged internally. Regular calibration is the only way to be certain that a detector is fully functional.

Moreover, a standing policy for regular calibration sets the tone for a safety-conscious work environment and indicates to workers that safety is a priority. As a result, workers may be more likely to keep safety principles in mind throughout the workday.

Keep good records. A written record of calibration should be kept for the life of each instrument. This record allows users to quickly identify an instrument that has a history of excessive maintenance/repair or is prone to erratic readings.

Bump tests vs. full calibration

There are two methods of verifying instrument accuracy: a functional or bump test and a full calibration, each appropriate under certain conditions. A bump test verifies calibration by exposing the instrument to a known concentration of test gas. The instrument reading is compared to the actual quantity of gas present (as indicated on the cylinder). If the instrument’s response is within an acceptable tolerance range of the actual concentration, its calibration is verified.

Sponsored by

Dräger’s gas monitoring systems protect workers in nearly every situation. Our products ensure uninterrupted operations and the highest safety standards. We’re there when it matters with Technology for Life.

www.draeger.com/uptime
(Note: It is recommended that users check with the detection equipment manufacturer for the acceptable tolerance ranges.)

Instruments should be “zeroed” before the bump test in order to give a more accurate picture of the bump test results. When performing a bump test, the test gas concentration should be high enough to trigger the instrument alarm.

If the bump test results are not within the acceptable range, a full calibration must be performed. A full calibration is the adjustment “of the instrument’s reading to coincide with a known concentration (generally a certified standard) of test gas. For verification of accuracy, calibration gas should always be certified by and traceable to the National Institute of Standards and Technology (NIST). In most cases, a full calibration is necessary only when an instrument fails a bump test or after it has been serviced. The full calibration and bump test should be conducted in a clean fresh air environment.

When to bump test and when to calibrate

In the past, there has often been confusion regarding proper calibration procedures and frequency. To clarify this issue, the ISEA issued a position statement on instrument calibration that states, “A bump test or full calibration of direct-reading portable gas monitors should be made before each day’s use in accordance with manufacturer’s instructions, using an appropriate test gas.” If the instrument fails a bump test, it must be adjusted through a full calibration before it is used.

The ISEA recommends more frequent testing if environmental conditions that could affect instrument performance are suspected, such as sensor poisons. The ISEA allows for less frequent calibration verification under certain conditions, but the interval between testing should never exceed 30 days.
Best practice: Set calibration rules

The following basic instrument calibration rules ensure a clear path to health and safety.

- **Follow the manufacturer’s guidelines for proper calibration.** No job, including instrument calibration, can be performed properly or safely without the right tools. The type and concentration of calibration gas, sample tubing, flow regulators, and calibration adapters are key links in the calibration chain. Using equipment provided by the original manufacturer should ensure a proper start to every calibration.

- **Only use certified calibration gas before its expiration date.** The most important tool used in calibration is the gas itself. The instrument can only be as accurate as the gas used to calibrate it. Be certain your supplier can provide a traceable certificate of analysis for every calibration gas cylinder. The concentration of calibration gas, particularly the concentration of reactive gases such as hydrogen sulfide or chlorine, will remain stable only for a finite period of time. Never use calibration gas after its expiration date.

- **Train workers on the proper methods of calibration.** Most instruments are designed to be field calibrated with instructions detailed in user manuals, training videos, or computer-based training modules. Everyone responsible for performing instrument calibration should be trained and tested accordingly.

There is an inherent risk in many workplaces of injury or illness from respiratory hazards such as oxygen deficiency and the presence of toxic gases. Detection technology and products exist to minimize such risk. Properly verifying the accuracy of gas detection equipment before each day’s use will help to ensure that each worker finishes the job safely.

Sponsored by

Dräger’s gas monitoring systems protect workers in nearly every situation. Our products ensure uninterrupted operations and the highest safety standards. We’re there when it matters with Technology for Life.

www.draeger.com/uptime
Dräger keeps performance at its peak.

Safety and productivity that never quit.

When the word "safety" is part of your job title, uptime isn't just a goal—it's an absolute necessity. That's because anything that affects the safety of workers also affects the productivity of your organization—and your peace of mind. Dräger's portfolio of gas detection and respiratory protection products ensures safety and peak performance by leveraging advanced technology born of more than 100 years of industrial safety experience. The result: people, products, and performance that are always on.

OPTIMIZE YOUR PERFORMANCE: VISIT WWW.DRAEGER.COM/UPTIME

Dräger. Technology for Life®